연구정보
Home 연구정보
국내외 연구기관에서 발표된 중국 연구 자료를 수집하여 제공합니다.
연구보고서
Research on Chinese Text Feature Extraction and Sentiment Analysis Based on Combination Network
Haoyue Xu, Lianhe Yang 2020-12-18
국내외 주요 기관에서 발표하는 자료들을 수집하여 제공하고 있습니다. 수록 자료의 자세한 내용은 해당 기관으로 문의하시기 바랍니다.
The complexity of Chinese language system brings great challenge to sentiment analysis. Traditional artificial feature selection is easy to cause the problem of inaccurate segmentation semantics. High quality preprocessing results are of great significance to the subsequent network model learning. In order to effectively extract key features of sentences, retain feature words while removing irrelevant noise and reducing vector dimensions, an algorithm module based on sentiment lexicon combined with Word2vec incremental training is proposed in terms of feature engineering. Firstly, the data set is cleaned, and the sentence is segmented by loading a custom sentiment lexicon with Jieba. Secondly, the results after stopping words are obtained through Skip-gram training algorithm to obtain the word vector model. Secondly, the model is added to a large corpus for incremental training to obtain a more accurate word vector model. Finally, the features are learned and classified by inputting the embedding layer into the neural network model. Through the comparison experiment of multiple models, it is found that the combined model (CNN-BiLSTM-Attention) has better classification effect and better application ability.
이전글 | Leadership in Perspective of the Organizational Frame | 2020-12-18 |
---|---|---|
다음글 | 미국 바이든 정부 출범의 대중국 영향 평가 | 2020-12-18 |